Hp 50g Graphing Calculator Uživatelský manuál Strana 473

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 887
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 472
Page 15-3
as the matrix H = [h
ij
] = [∂φ/x
i
x
j
], the gradient of the function with respect to
the n-variables, grad f = [ ∂φ/x
1
, ∂φ/x
2
, … ∂φ/x
n
], and the list of
variables [x
1
’ ‘x
2
’…’x
n
’]. Consider as an example the function φ(X,Y,Z) = X
2
+
XY + XZ, we’ll apply function HESS to this scalar field in the following example
in RPN mode:
Thus, the gradient is [2X+Y+Z, X, X]. Alternatively, one can use function DERIV
as follows: DERIV(X^2+X*Y+X*Z,[X,Y,Z]), to obtain the same result.
Potential of a gradient
Given the vector field, F(x,y,z) = f(x,y,z)i+g(x,y,z)j+h(x,y,z)k, if there exists a
function φ(x,y,z), such that f = ∂φ/x, g = ∂φ/y, and h = ∂φ/z, then φ(x,y,z) is
referred to as the potential function
for the vector field F. It follows that F = grad
φ = ∇φ.
The calculator provides function POTENTIAL, available through the command
catalog (‚N), to calculate the potential function of a vector field, if it
exists. For example, if F(x,y,z) = xi + yj + zk, applying function POTENTIAL we
find:
Since function SQ(x) represents x
2
, this results indicates that the potential
function for the vector field F(x,y,z) = xi + yj + zk, is φ(x,y,z) = (x
2
+y
2
+z
2
)/2.
Notice that the conditions for the existence of φ(x,y,z), namely, f = ∂φ/x, g =
∂φ/y, and h = ∂φ/z, are equivalent to the conditions: f/y = g/x, f/z =
h/x, and g/z = h/y. These conditions provide a quick way to determine
if the vector field has an associated potential function. If one of the conditions
f/y = g/x, f/z = h/x, g/z = h/y, fails, a potential function
φ(x,y,z) does not exist. In such case, function POTENTIAL returns an error
message. For example, the vector field F(x,y,z) = (x+y)i + (x-y+z)j + xzk, does
Zobrazit stránku 472
1 2 ... 468 469 470 471 472 473 474 475 476 477 478 ... 886 887

Komentáře k této Příručce

Žádné komentáře