Hp 50g Graphing Calculator Uživatelský manuál Strana 529

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 887
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 528
Page 16-52
where M = n/2 or (n-1)/2, whichever is an integer.
Legendre’s polynomials are pre-programmed in the calculator and can be
recalled by using the function LEGENDRE given the order of the polynomial, n.
The function LEGENDRE can be obtained from the command catalog (‚N)
or through the menu ARITHMETIC/POLYNOMIAL menu (see Chapter 5). In
RPN mode, the first six Legendre polynomials are obtained as follows:
0 LEGENDRE, result: 1, i.e., P
0
(x) = 1.0.
1 LEGENDRE, result: ‘X’, i.e., P
1
(x) = x.
2 LEGENDRE, result: ‘(3*X^2-1)/2’, i.e., P
2
(x) = (3x
2
-1)/2.
3 LEGENDRE, result: ‘(5*X^3-3*X)/2’, i.e., P
3
(x) =(5x
3
-3x)/2.
4 LEGENDRE, result: ‘(35*X^4-30*X^2+3)/8’, i.e.,
P
4
(x) =(35x
4
-30x
2
+3)/8.
5 LEGENDRE, result: ‘(63*X^5-70*X^3+15*X)/8’, i.e.,
P
5
(x) =(63x
5
-70x
3
+15x)/8.
The ODE (1-x
2
)(d
2
y/dx
2
)-2x (dy/dx)+[n (n+1)-m
2
/(1-x
2
)] y = 0, has for
solution the function y(x) = P
n
m
(x)= (1-x
2
)
m/2
(d
m
Pn/dx
m
). This function is
referred to as an associated Legendre function
.
Bessel’s equation
The ordinary differential equation x
2
(d
2
y/dx
2
) + x (dy/dx)+ (x
2
-ν
2
) y = 0,
where the parameter ν is a nonnegative real number, is known as Bessel’s
differential equation. Solutions to Bessel’s equation are given in terms of
Bessel functions of the first kind of order
ν:
mn
M
m
n
m
n
x
mnmnm
mn
xP
2
0
)!2()!(!2
)!22(
)1()(
=
=
.....
)!2()!1(!12
)!22(
)!(2
)!2(
2
2
+
=
n
n
n
n
x
nn
n
x
n
n
=
+
++Γ
=
0
2
2
,
)1(!2
)1(
)(
m
m
mm
mm
x
xxJ
ν
ν
ν
ν
Zobrazit stránku 528
1 2 ... 524 525 526 527 528 529 530 531 532 533 534 ... 886 887

Komentáře k této Příručce

Žádné komentáře