HP 48gII Graphing Calculator Uživatelský manuál Strana 463

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 864
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 462
Page 14-2
h
yxfyhxf
x
f
h
),(),(
lim
0
+
=
.
Similarly,
k
yxfkyxf
y
f
k
),(),(
lim
0
+
=
.
We will use the multi-variate functions defined earlier to calculate partial
derivatives using these definitions. Here are the derivatives of f(x,y) with
respect to x and y, respectively:
Notice that the definition of partial derivative with respect to x, for example,
requires that we keep y fixed while taking the limit as h0. This suggest a
way to quickly calculate partial derivatives of multi-variate functions: use the
rules of ordinary derivatives with respect to the variable of interest, while
considering all other variables as constant. Thus, for example,
() ()
)sin()cos(),cos()cos( yxyx
y
yyx
x
=
=
,
which are the same results as found with the limits calculated earlier.
Consider another example,
()
xyyxyyx
x
202
22
=+=+
In this calculation we treat y as a constant and take derivatives of the
expression with respect to x.
Similarly, you can use the derivative functions in the calculator, e.g., DERVX,
DERIV, (described in detail in Chapter 13) to calculate partial derivatives.
Recall that function DERVX uses the CAS default variable VX (typically, ‘X’),
Zobrazit stránku 462
1 2 ... 458 459 460 461 462 463 464 465 466 467 468 ... 863 864

Komentáře k této Příručce

Žádné komentáře