HP 48gII Graphing Calculator Uživatelský manuál Strana 469

  • Stažení
  • Přidat do mých příruček
  • Tisk
  • Strana
    / 864
  • Tabulka s obsahem
  • KNIHY
  • Hodnocené. / 5. Na základě hodnocení zákazníků
Zobrazit stránku 468
Page 14-8
The resulting matrix has elements a
11
=
2
φ/X
2
= 6., a
22
=
2
φ/X
2
= -2.,
and a
12
= a
21
=
2
φ/XY = 0. The discriminant, for this critical point s2(1,0)
is = (
2
f/x
2
) (
2
f/y
2
)-[
2
f/xy]
2
= (6.)(-2.) = -12.0 < 0, indicating a
saddle point.
Multiple integrals
A physical interpretation of an ordinary integral,
b
a
dxxf )( , is the area
under the curve y = f(x) and abscissas x = a and x = b. The generalization
to three dimensions of an ordinary integral is a double integral of a function
f(x,y) over a region R on the x-y plane representing the volume of the solid
body contained under the surface f(x,y) above the region R. The region R
can be described as R = {a<x<b, f(x)<y<g(x)} or as R = {c<y<d, r(y)<x<s(y)}.
Thus, the double integral can be written as
∫∫∫∫∫∫
==
d
c
ys
yr
b
a
xg
xf
R
dydxyxdydxyxdAyx
)(
)(
)(
)(
),(),(),( φφφ
Calculating a double integral in the calculator is straightforward. A double
integral can be built in the Equation Writer (see example in Chapter 2). An
example follows. This double integral is calculated directly in the Equation
Writer by selecting the entire expression and using function @EVAL. The result
is 3/2. Step-by-step output is possible by setting the Step/Step option in the
CAS MODES screen.
Zobrazit stránku 468
1 2 ... 464 465 466 467 468 469 470 471 472 473 474 ... 863 864

Komentáře k této Příručce

Žádné komentáře